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X-ray emission probes the physics of extreme
processes, places and events

Neutron Stars
Black Holes ~ 10'2G)

» High temperatures, intense gravity, strong magnetic fields —
explosions, collisions, shocks, and collapsed objects

= Conditions not achievable in earth-bound labs or accelerators

= X-ray observations can only be made from space



High-Energy Observatories 2004-2022
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X-ray Background Spectrum
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Energetics and Evolution of Black Holes in AGN

Most Black Holes at the center of galaxies are thought to
be hidden behind an inner thick torus of material
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Hard X-rays can penetrate this torus above 10 keV and be seen as a
very absorbed source, Swift is detecting the very brightest of these

Overall geometry is not known, and is critical to understand the hard X-
ray background and constrain the evolution of black holes



Resolving the 10-40 keV X-ray Background
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Requires two order of magnitude improved sensitivity



Multilayer Hard X-ray Telescopes
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New technology that will open up the hard X-ray band by bringing focused
iImaging to increase sensitivity by several orders of magnitude



NuStar — Hard X-ray Imaging/Survey 2011

Hard X-ray imaging ~ 40 arc sec to resolve the 40 keV background
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Hard X-ray

Imaging ~ 1 arc min

Astro-H Concept
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Simbol-X

Formation Flying with focal
length 20m

Mirror: XMM-type (20 arc sec)

Detector: DEPFET/CdZnTe
Sandwich

Collaboration between France
(detector spacecraft, HE focal
plane), Italy (mirror spacecraft,
mirrors) & Germany (LE focal plane
detector, mirror test, calibration)

Proposed for 2014

Integral I1SGR

Simbol—X
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Simbo#X 10-40
keV @ 1 Msec
(courtesy Fiore)




Resolving the 10-40 keV X-ray Background

Fractional XRB resolved
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IXOThe International X-ray Observatory (?

The missions formerly known as Con-X and XEUS

Chandra and XMM-Newton provide our
deepest view of the X-ray Universe,
revealing a rich diversity of sources

Most X-ray spectra currently available have
moderate resolution CCD spectra E/AE <
30, insufficient for diagnostics routinely
available in other wavebands

e The X-ray band is rich in diagnostic features
— for the elements with atomic number from
Carbon through to Zinc

‘Chandra‘Deep Field .

IXO will be a facility that provides a factor of 10-100 increase in effective area

with high spectral resolution and deep imaging to open a new era in X-ray
astronomy:

* Telescope area: ~3 m?2@ 1 keV,~1m2 @ 6 keV, ~0.07 m2 @ 40 keV
* Angular resolution of ~ 5 arc sec or better

« Spectral resolution (E/AE) of ~ 1250-2400 (over 0.5 to 7 keV)
* FOV of ~ 5 arc min or better



IX

. Black Holes and Matter 754’“@
under Extreme Conditions e

How do super-massive Black Holes
grow and evolve?

Does matter orbiting close to a
Black Hole event horizon follow
the predictions of General

Neutron star RelatIVIty’?

Mass
~1.5 times the Sun

What is the Equation of State of
matter in Neutron Stars?

with other particlés




IXO Il. Galaxy Formation, Galaxy / - 44
Clusters and Cosmic Feedback @/

How does Cosmic Feedback work
and influence galaxy formation?

How does galaxy cluster evolution
constrain the nature of Dark Matter
and Dark Energy?

Where are the missing baryons in the
nearby Universe?
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When and how were the elements
created and dispersed?

How do high energy processes affect
planetary formation and habitability?

How do magnetic fields shape stellar
exteriors and the surrounding
environment?

How are particles accelerated to
extreme energies producing shocks,
jets and cosmic rays?




X-ray Micro-calorimeter Spectrometer (XMS) @

Arrays under development and approaching

= X-ray microcalorimeter: thermal goal of 2 eV at 6 keV.
detection of individual X-ray photons
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|XO: Baseline ESA-JAXA-NASA Concept

* Focal length of 20-25m with extendible optical bench

« Concept must accommodate both glass (NASA) and
silicon (ESA) optics technology (with final select at
appropriate time)

« Core instruments to include:

« X-ray Micro-calorimeter/Narrow Field Imager

« Wide Field Imager

« X-ray Grating Spectrometer

 Allocation for further modest payload elements

« Concept compatible with Ariane V and Atlas V 551




IX(O WMission Concept

Extendible Bench with light
tight curtain (not shown)
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Focal Plane Spacecraft bus Mirror

= L2 Orbit; 700,000 km radius halo orbit
— High operational efficiency
— Uninterrupted viewing
— Stable temperature

IXO in Atlas V
551fairing

= 5 year life; 10 years or more consumables



IXO Focal Plane Preliminary Layout @/%
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X-ray Mirror Baseline Cliv:

= Key requirements: @

— Effective area ~3 m2 @ 1.25 keV ; ~1
m?2 @ 6 keV

— Angular Resolution <=5 arc se

» Single optic with design optimized to
minimize mass and maximize the
collecting area ~3.4m diameter

= Two parallel technology approaches
Glass Silicon being pursued

— Silicon micro-pore optics — ESA

— Slumped glass — NASA

= Both making good progress
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High Redshift Quasars

Chandra has detected X-ray emission
from ~100 high redshift quasars at z
> 4 (3 examples shown)

Flux is typically 2-10 x 101> erg cm-2 s-1
beyond grasp of XMM-Newton and
Chandra high resolution zeggs
spectrometers, but within the
capabilities of IXO

colorimeter
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IXO First Black Holes

Initial seed mass = 10 M, 10° IVlsun
known QSO

106 M.,
Mini-QSOs

Black Hole

|
t / Gyr Archibald et al., 2001

10° M, @ redshift of 10 is detectable by IXO
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Multi-A Power of future facilities @ z=10
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Black Holes, Accretion Disks and X-ray Reflection

The Iron fluorescence emission line is created when X-rays scatter and are absorbed in
dense matter, close to the event horizon of the black hole.
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Black Hole Relativistic Iron K Lines

Fluorescent iron K line from an accretion disk close to the Black Hole event horizon
reveals the redshift and broadening from the effects of strong gravity predicted by
General Relativity
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Probing Black Hole Spin
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Black Hole Science with IXO

Nature is providing us with a new and
direct probe of strong field General
Relativity in the vicinity of Black
Holes

Schwarzschild Kerr (spinning)
Relativistically broadened iron Klines g X0 Simulat
have been detected from within 6 . - slmulation
P .. chwarzschild =
gravitational radii of Black Hole by Ker (spiming :
ASCA, XMM-Newton, Chandra and | g
Suzaku

IXO will test the predictions of GR in
the strong gravity limit on orbital
timescales near the event horizon

Measure the spin of Black Holes for
hundreds of AGN, over a large Energy (keV)
range of redshift, to test evolution
models: mergers verses accretion Very Broad Line = Spinning BH



Constellation-X Observing Strong Gravity

Constellation-X will study detailed line variability on orbital times scale close to event
horizon in nearby supermassive Black Holes:

v Dynamics of individual “X-ray bright spots” in disk to determine mass and spin

v Quantitative measure of orbital dynamics: Test the Kerr metric

Magneto-hydro-dynamic simulations of accretion disk surrounding a Black Hole (Armitage & Reynolds 2003)



Predicted orbits of individual bright spots

a(spin)=0.98
Radius=3.0
Inclination=30

C. Reynolds University of Maryland



Testing GR via consistency of measurements

If GR is correct, Con-X measured
spin and mass should be
independent of radius of bright spot

GR incorrect
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C. Reynolds University of Maryland



What is Dark Energy?

3 Heavy Elements:
S8l 0.03%

We do not
know what 95%
...  Of the universe
4 is made of!

Ghostly Neutrinos:
0.3%

Free Hydrogen
and Helium:

e % :
L iy 4%
Dark Matter:
25%
Dark Energy:
70%

Solving this mystery may fundamentally change our view of the Universe
and also may impact the standard model of particle physics!




What is Dark Energy?

In the standard cosmological framework the acceleration of the expansion
of the Universe is caused by dark energy that makes up 70% of
mass-energy density of the Universe in the current epoch

Several Possibilities:
o Dark Energy constant in space & time (Einstein’s A)
o Dark Energy varies with time
o GR or standard cosmological model incorrect
o Or something new and completely unexpected....

There are no leading theoretical explanations for Dark Energy, to help
guide us as to the right experiment to perform

Multiple approaches to measure the expansion of the universe are vital to
look for inconsistencies
— the answer may be where we least expect it!



Dark Energy Experimental Approaches

Many observational routes are being pursued

CMB (WMAP, Planck), SNla (LSST, JDEM), BAO (LSST, SKA, JDEM),
weak lensing (LSST, SKA, JDEM), cluster counts (X-ray, LSST)

+ distance measurements to galaxy clusters (Con-X ---- space only).

These methods have different strengths/weaknesses and are
sensitive to dark energy in essentially two different ways:

1) Absolute distances/expansion history (CMB, SN1a, BAO, clusters)

2) Growth of structure (weak lensing, cluster counts)

Differences between these two approaches may point to problems with
GR on large scales

From Steve Allen Kipac/SLAC
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Clusters of Galaxies as Cosmological Probes

Clusters of galaxies are the largest objects in the Universe and grow from
the initial fluctuations seen in the microwave background

Clusters of galaxies are the largest
objects in the Universe and their
properties and evolution are

. : sensitive to the Cosmological
parameters



Chandra data on Clusters

ABeLL 2029 M52137 M51137

Dynamically relaxed, highly X-ray luminous clusters spanning the
redshift range 0<z<1.1 (look back time of 8Gyr)

From Steve Allen Kipac/SLAC



4 yrs all-sky survey yield
100,000 clusters of galaxies (DE!)

3.5 Million AGN
Lots of other interesting science!
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Spektrum XG X-ray Calorimeter
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Astro-H: High resolution spectroscopy(dE<10eV)

Expected with | Astro-H |SXS
Dynamics of plasmas in clusters

A2256
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IXO Dark Energy

IXO will derive cosmological parameters using (at
least) three different galaxy cluster techniques:

1. Using the gas mass fraction in clusters as a
“standard candle”

2. in combination with microwave background
measurements the Sunyaev-Zeldovich technique
to measure absolute distances

3. Measuring the evolution of the cluster
parameters and mass function with redshift
(=growth of structure)

1 and 2 are ‘distance rule’ techniques (ala SNla), 3
is a “growth of structure” technique which
depends on GR




IXO Dark Energy Cosmology
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* Using the gas mass fraction as a standard ruler measures f,, to 5% (or better) for each of
500 galaxy clusters to give €2,,=0.300+0.007, €2,=0.700+0.047

« Cluster X-ray properties in combination with sub-mm data measure absolute cluster
distances via the S-Z effect and cross-check f, results with similar accuracy

« Determining the evolution of the cluster mass function with redshift reveals the growth of
structure and provides a powerful independent measure of Cosmological parameters (see
papers by Vikhlinin, Nagi, Kravtsov)



Growth of Black Holes and Galaxies

Groups and Clusters of Galaxies and the importance of

AGN feedback

With AGN
pre-heating

ejection/outflows
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IX Cosmic Feedback

Perseus Cluster of Galaxies

Large scale-structure simulations require
AGN feedback to regulate the growth of
galaxies and clusters of galaxies

Velocity measurements crucial to
determine heating and state of Intra-
cluster medium

IXO will probe the hot ICM/IGM through
velocity measurements to the required
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Why X-Ray Polarization is important

Unpolarized
Incident
Light

Polarized
Reflected
Light

Scattering induces polarization.

The polarization is sensitive to the
geometry of the source environment.

Polarized (\)’J
X-rays Electron
o

Magnetic Field

\/\/\\/;\/\* Polarized
M X-rays

Synchrotron emission in a strong magnetic field.

In magnetic fields electrons radiate with
polarization perpendicular to B.

A

%

Black hole and
accretion disk

Gravitational distortions of space bend the
photon trajectories and rotate polarization.

A
In neutron star k

atmospheres, the
opacity is affected <«
by the electron’s
Landau energy \
levels and the i
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Polarization Detection Break Through

Photo-electrons from an .gi; .
ionizing X-ray follow the E- pabeatieta
vector ‘e E .
Costa et al. (2001) showed e
that new gas detector track image
technology could resolve the

electron track ‘

Black, Baker, Deines-Jones, LY
Hill, & Jahoda (2006)
developed the time projection fanftd” e RO P
chamber which provides both
sensitivity to polarization and

high detector efficiency S i i e

Sample modulation for Ne/Nitromethane gas. u ~0.4



The GEMS Instrument and Spacecraft

Sun -
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Pl: Jean Swank
Selected for Phase A SMEX study

Suzaku-like telescopes are deployed on a
boom.

The spacecraft rotates at 0.1 rpm. This
allows measurement of and correction for
polarization produced by systematic errors

Pointing 90+30 degrees from the sun will
allow any direction to be seen every 6
months

The mission is sized for 2 yr, while the
baseline program sampling types of
sources would take 8-12 months, with the
remainder for a Guest Observer program



Sensitivity for predicted 1 % Polarizations
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SXRP Spectroscopic X-ray Polarimeter
AXP Imaging polarimeters proposed
in 2003

Important model predictions for
black holes are 1-3%. LMXB
could be similar (Sazonov &
Sunyaev 2001). Possible in few
x 104 s observations.
Predictions for millisecond
pulsars are larger (Viironen &
Poutanen 2004).

Magnetars are weak persistent
sources (few mCrabs), but
polarization may be strong.

10’

Seyferts are weak and may
have low polarization. But
long observations are
possible.




Summary

» The future of high energy Astrophysics is bright!
= GLAST is on orbit and ready to deliver tremendous new gamma ray data
= The coming decade will:

— open up the hard X-ray band to imaging spectrometers (NuSTAR,
Astro-H, SIMBOL-X) and reveal the geometry and energetics of Black
Holes

— provide a new X-ray survey (Spektrum XG) that will reveal 100,000 new
clusters of galaxies to constrain Dark Energy

— fly the first micro-calorimeter arrays to open a new era of X-ray
spectroscopy (Astro-H and Spectrum-XG)

— possibly see the first dedicated X-ray polarization mission (GEMS)

= ESA, JAXA and NASA are planning for the end of the decade an
International X-ray Observatory (IXO) 10-100 times more capable than
XMM-Newton and Chandra, that will search for the first Black Holes and
probe close to the event horizon, place tight constraints on Dark Energy
and provide a major new astrophysics facility



